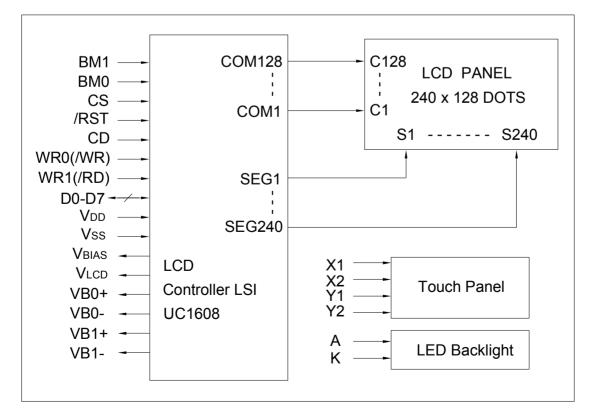
LCD Module Specification

Model No.: LG2401283-FFDWH6V-TP LG2401283-LMDWH6V-TP LG2401283-SFDWH6V-TP LG2401283-BMDWH6V-TP

Table of Contents

1. BASIC SPECIFICATIONS	2
2. ABSOLUTE MAXIMUM RATINGS	4
3. ELECTRICAL CHARACTERISTICS	4
4. TOUCH PANEL CHARACTERISTICS 1	0
5. DISPLAY CONTROL COMMANDS 1	11
6. CONNECTION WITH MPU 1	12
7. INITIALIZATION AND POWER OFF 1	14
8. ELECTRO-OPTICAL CHARACTERISTICS1	5
9. DIMENSIONAL OUTLINE 1	6
10. LCD MODULE NUMBERING SYSTEM ·······	7
11. PRECAUTIONS FOR USE OF LCD MODULE	8

RECORD OF REVISION


Rev.	Date	Page	Item	Description
0.1	2008/06/18			New release

1. BASIC SPECIFICATIONS

1.1 Features

Item	Specifications	Unit
Display Format	240 x 128	dot
LCD Mode	Refer to section 1.4	-
Driving Method	1/128 Duty, 1/12 Bias	-
Viewing Direction	6:00	O'clock
Backlight & Color	LED, white color	-
Outline Dimension (WxHxT)	98.7 x 67.7 x 11.7 (LCD pin length included)	mm
Viewing Area (WxH)	92.0 x 53.0	mm
Active Area (WxH)	83.975 x 44.775	mm
Dot Pitch (WxH)	0.35 x 0.35	mm
Dot Size (WxH)	0.325 x 0.325	mm
Touch Panel	4-wire analog	-
Weight	75	g
Controller	UC1608 (COG)	-
Interface	4-bit, 8-bit parallel or 3/4 wire SPI	-
Power Supply (VDD)	2.7 to 3.3	V

1.2 Block Diagram

1.3 Terminal Functions

Pin No.	Symbol	Level	Function							
1	VB1-	-	LCD Bias Voltages. These voltages are generated internally.							
2	VB1+	-		Connect a 4.7uF/6.3V capacitor between VB1+ and VB1–.						
3	VB0-	-	LCD Bia	LCD Bias Voltages. These voltages are generated internally.						
4	VB0+	-	Connect	a 4.7uF/6.3∖	/ capacitor bet	ween VB0+ a	ind VB0–.	-		
5	VLCD	-			(VLCD is ge capacitor and			1608).		
6	VBIAS		The reference voltage to generate LCD driving voltage. VBIAS can be used to fine turn VLCD (contrast) by external variable resistors. When use the internal resistor network, connect a 0.1uF capacitor to VSS.							
7	Vss	0V	Ground							
8	Vdd	2.7 to 3.3V	Power su	upply for logic	c and charge p	oump				
9	D7				both serial and ect D0 to SCK		interfaces.			
10	D6			BM[1:0]=1x	BM[1:0]=0x	BM[1:0]=01	BM[1:0]=00]		
				8-bit parallel	4-bit parallel	S9	S8/S8uc			
11	D5	-	D0	D0	D0/D4	SCK	SCK	_		
12	D4	H/L	D1	D1	D1/D5	_	-			
10	D 2		D2 D3	D2 D3	D2/D6 D3/D7	– SDA	- SDA	-		
13	D3		D3 D4	D3		- 3DA	SDA _	-		
14	D2		D5	D5	_	_	_	-		
15	D1		D6	D6	-	S9	S8/S8uc			
16	DO		D7	D7		1	1			
16	D0				to VDD or VSS					
17	WR1				ead/write opera s /WR signal,					
18	WR0	H/L	In 6800 r	node: WR0 i	s R/W signal, se two pins are	WR1 is Enab	le signal.	vss		
19	CD	H/L	Data or i L: D0 to	nstruction se D7 are Instru		l: D0 to D7 ar	e display data			
20	/RST	L	-		L". There is bu ST to VDD whe	•	n-reset circuit	in		
21	CS	Н	Chip sele	ection signal,	active "H".					
			Bus mod BM[1:0] a	e selection. and [D7:D6]	The interface to the following	g relationship	•			
22	BM0		BM[1:0]	[D7:D6]		Mode				
			11	Data		6800/8-bit				
			10	Data		8080/8-bit				
		H/L	01	0x		6800/4-bit				
	BM1		00 0x 8080/4-bit 01 10 3-wire SPI w/ 9-bit token (S9: conventional)							
23			01	10			,			
			00	10 11	4-wire SPI w/	•	: conventional)	ct)		
			00	I II	JIH-WILE OFI W/	U-DIL LUNEII (30U		01)		

- 4 -

Part No.	Description
LG2401283-FFDWH6V	FSTN positive/transflective/white LED backlight
LG2401283-LMDWH6V	FSTN negative/blue/transmissive/white LED backlight
LG2401283-SFDWH6V	STN positive/yellow green/transflective/white LED backlight
LG2401283-BMDWH6V	STN negative/blue/transmissive/white LED backlight

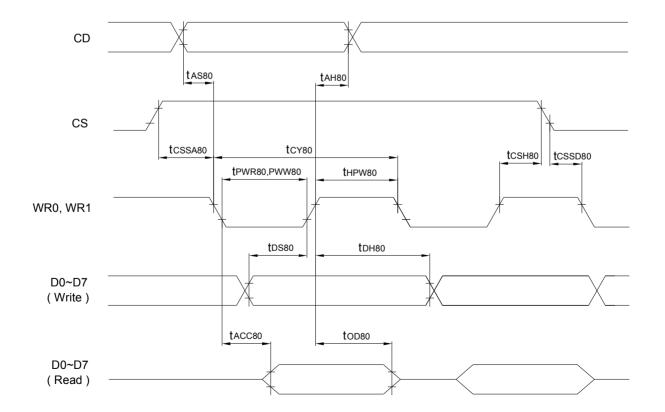
1.4 Ordering Information

Note: For more information, refer to section 10 (Page 17)

2. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit
Supply Voltage (Logic & Charge Pump)	VDD	-0.3	4.0	V
LCD Generated voltage	VLCD	-0.3	17.0	V
Input Voltage	Vin	-0.4	VDD+0.5	V
Operating temperature	TOPR	-20	+70	°C
Storage temperature.	TSTR	-30	+80	°C

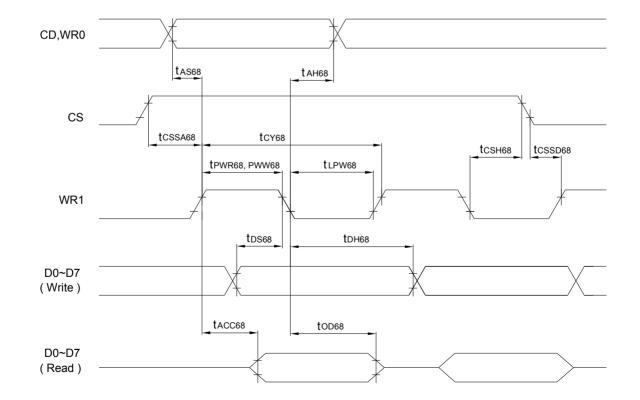
3. ELECTRICAL CHARACTERISTICS


3.1 DC Characteristics (Ta=25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (Logic & Charge Pump)	VDD		2.7	3.0	3.3	V
Charge Pump Output Voltage	VLCD			15.2	16.0	V
Input Low Voltage	VIL		0		0.2VDD	V
Input High Voltage	VIH		0.8VDD		VDD	V
Output Low Voltage	VOL		0		0.2VDD	V
Output High Voltage	Vон		0.8VDD		VDD	V
Supply Current	IDD	VDD=3.0V VLCD=15.2V		1.0	1.5	mA

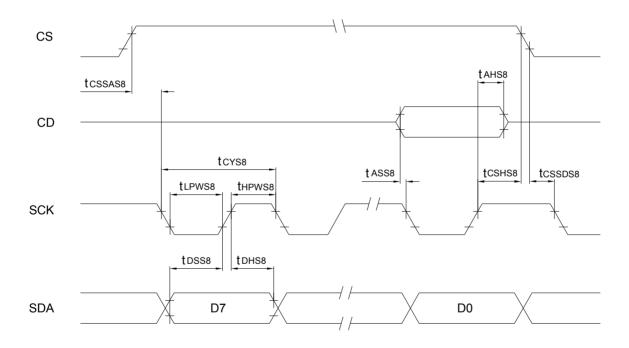
- 5 -

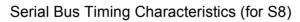
Description	Signal	Symbol	Condition	Min.	Max.	Units
Address setup time Address hold time	CD	tas80 tah80		0 20		
System cycle time 8 bits bus (read) (write) 4 bits bus (read) (write)	WR0, WR1	tCY80		140 140 140 140		
Pulse width 8 bits (read) 4 bits	WR1	tpwr80		65 65		
Pulse width 8 bits (write) 4 bits	WR0	tpww80		35 35		
High pulse width 8 bits bus (read) (write) 4 bits bus (read) (write)	WR0, WR1	thpw80		65 35 65 35		ns
Data setup time Data hold time	D0 to D7	tDS80 tDH80		30 20		
Read access time Output disable time	D0 to D7	tacc80 tod80	CL=100pF	 12	60 20	
Chip select setup time	CS	tcssa80 tcssd80 tcsн80		10 10 20		


3.2 Parallel Bus Timing Characteristics (8080 Series MPU, VDD=2.7V to 3.3V, Ta=25°C)

Parallel Bus Timing Characteristics (for 8080 MPU)

_						
Description	Signal	Symbol	Condition	Min.	Max.	Units
Address setup time Address hold time	CD, WR0	tas68 tah68		0 20		
System cycle time 8 bits bus (read) (write) 4 bits bus (read) (write)	WR1	tCY68		140 140 140 140		
Pulse width 8 bits (read) 4 bits	WR1	tpwr68		65 65		
Pulse width 8 bits (write) 4 bits	WR1	tpww68		35 35		
Low pulse width 8 bits bus (read) (write) 4 bits bus (read) (write)	WR1	tlpw68		65 35 65 35		ns
Data setup time Data hold time	D0 to D7	tds68 tdн68		30 20		
Read access time Output disable time	D0 to D7	tacc68 tod68	CL=100pF	 12	60 20	
Chip select setup time	CS	tcssa68 tcssd68 tcsh68		10 10 20		

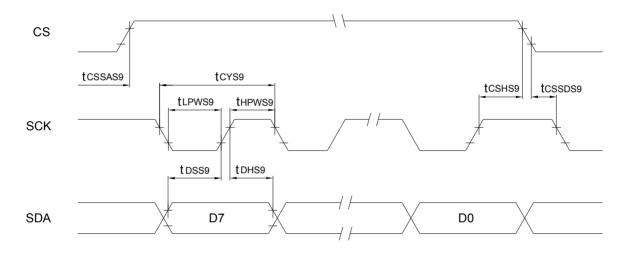

3.3 Parallel Bus Timing Characteristics (6800 Series MPU, VDD=2.7V to 3.3V, Ta=25°C)



Parallel Bus Timing Characteristics (for 6800 MPU)

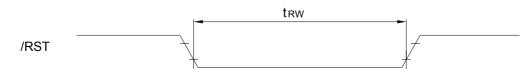
Description	Signal	Symbol	Condition	Min.	Max.	Units
Address setup time	00	tASS8		0		
Address hold time	CD -	tans8		20		
System cycle time		tCYS8		140		
Low Pulse width	SCK	tlpws8		65		
High Pulse width	-	thpws8		65		ns
Data setup time Data hold time	SDA	tdssa tdhsa		30 20		
Chip select setup time	CS	tcssas8 tcssds8 tcshs8		10 20 10		

3.4 Serial Bus Timing Characteristics (for S8, VDD=2.7V to 3.3V, Ta=25°C)



- 8 -

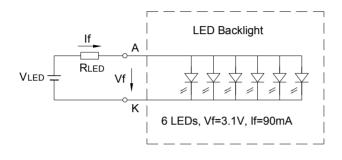
Description	Signal	Symbol	Condition	Min.	Max.	Units
System cycle time	S C K	tcys9		140		
Low Pulse width	SCK	tlpws9		65		
High Pulse width		thpws9		65		
Data setup time Data hold time	SDA	tdss9 tdнs9		30 20		ns
Chip select setup time	CS	tcssas9 tcssds9 tcshs9		10 20 10		


3.5 Serial Bus Timing Characteristics (for S9, VDD=2.7V to 3.3V, Ta=25°C)

Serial Bus Timing Characteristics (for S9)

3.6 Reset Characteristics (VDD=2.7V to 3.3V, Ta=25°C)

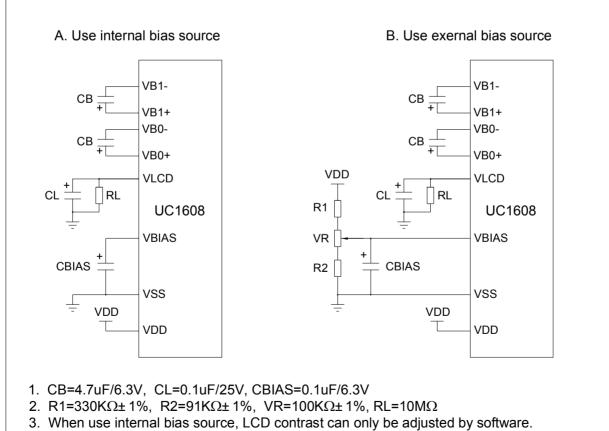
Description	Signal	Symbol	Condition	Min.	Max.	Units
Reset low pulse width	/RST	trw		1000		ns



Reset Characteristics

en ees saaraigne en al						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	Vf		2.9	3.1	3.3	V
Forward Current	lf	Vf=3.1V		90		mA
Color			White	;		

3.7 LED Backlight Characteristics (Ta=25°C)


* RLED is the current limiting resistor for LED backlight. RLED=(VLED-3.1V)/90mA

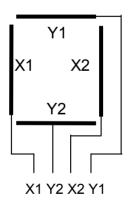
Vled	RLED
5.0V	22Ω±1%,1/4W
3.3V	2.4Ω±1%,1/10W
3.0V	0Ω,1/10W

Recommended vaule for RLED

3.8 Power Supply for Logic and LCD Driving

- 4. When use external bias source, LCD contrast can be adjusted by either VR or software.
- 5. To ensure consistency of LCD contrast, circuitry B is recommended prior to circuitry A.

4. TOUCH PANEL CHARACTERISTICS


4.1 Electrical and Optical Characteristics (Ta=25°C)

Item	Min.	Тур.	Max.	Unit	Remark	
Linearity	-1.5		1.5	%	X and Y directions	
Circuit Resistance	200		900	Ω	X direction	
	200		900	Ω	Y direction	
Insulation Resistance	10			MΩ	DC 25V	
Operating Voltage		5	7	V	DC	
Chatting Time			15	ms		
Transmittance	80			%		
Surface Treatment		Anti-				

4.2 Mechanical & Reliability Characteristics

Item	Min.	Тур.	Max.	Unit	Remark
Activation Force			100	g	
Surface Hardness	3			Н	
Knocking Durability	1,000,000			times	
Writing Durability	100,000			words	

4.3 Touch Panel Circuit Diagram

4.4 Terminal Functions for Touch Panel

Pin No.	Symbol	Function
1	X1	Touch panel left side terminal
2	Y2	Touch panel bottom side terminal
3	X2	Touch panel right side terminal
4	Y1	Touch panel top side terminal

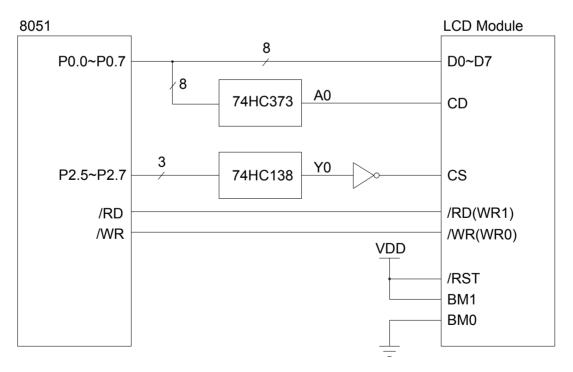
5. DISPLAY CONTROL COMMANDS

The following is a list of host commands supported by UC1608

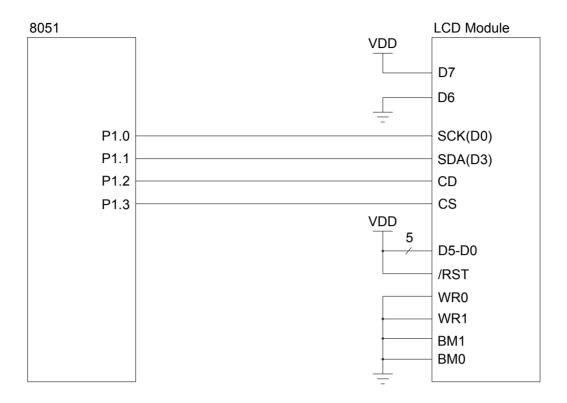
C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle

- # Useful Data bits
- Don't Care

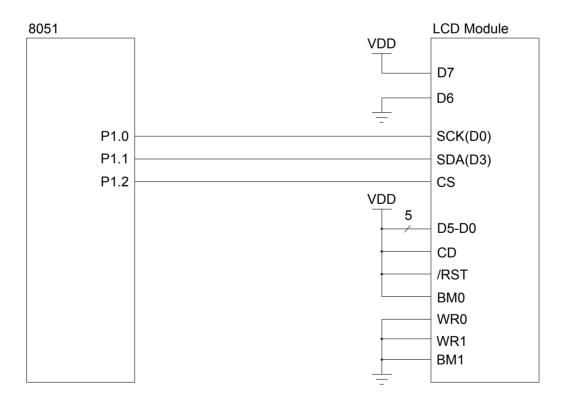
	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default	
1	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1 byte	N/A	
2	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1 byte	N/A	
3	Get Status	0	1	ΒZ	MX	DE	RS	WA	GN1	GN0	1	Get Status	N/A	
4	Set Column Address LSB	0	0	0	0	0	0	#	#	#	#	Set CA[3:0]	0	
4	Set Column Address MSB	0	0	0	0	0	1	#	#	#	#	Set CA[7:4]	0	
5	Set Mux Rate and Temperature Compensation	0	0	0	0	1	0	0	#	#	#	Set {MR, C[1:0]}	MR: 1 TC: 00b	
6	Set Power Control	0	0	0	0	1	0	1	#	#	#	Set PC[2:0]	101b	
7	Set Adv. Program Control	0	0	0	0	1	1	0	0	0	R	For UltraChip only.	N/A	
1	(double byte command)	0	0	#	#	#	#	#	#	#	#	Do not use.		
8	Set Start Line	0	0	0	1	#	#	#	#	#	#	Set SL[5:0]	0	
9	Set Gain and Potentiometer	0	0	1	0	0	0	0	0	0	1	Set {GN[1:0],	GN=3	
3	(double byte command)	0	0	#	#	#	#	#	#	#	#	PM[5:0]}	PM=0	
10	Set RAM Address Control	0	0	1	0	0	0	1	#	#	#	Set AC[2:0]	001b	
11	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC[1]	0=disable	
12	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0=disable	
13	Set Display Enable	0	0	1	0	1	0	1	1	1	#	Set DC[2]	0=disable	
14	Set Fixed Lines	0	0	1	0	0	1	#	#	#	#	Set FL[3:0]	0	
15	Set Page Address	0	0	1	0	1	1	#	#	#	#	Set PA[3:0]	0	
16	Set LCD Mapping Control	0	0	1	1	0	0	#	#	#	#	Set LC[3:0]	0	
17	System Reset	0	0	1	1	1	0	0	0	1	0	System Reset	N/A	
18	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A	
19	Set LCD Bias Ratio	0	0	1	1	1	0	1	0	#	#	Set BR[1:0]	10b=12	
20	Reset Cursor Mode	0	0	1	1	1	0	1	1	1	0	AC[3]=0, CA=CR	N/A	
21	Set Cursor Mode	0	0	1	1	1	0	1	1	1	1	AC[3]=1, CR=CA	N/A	
22	Set Test Control	0	0	1	1	1	0	0	1	TT		For UltraChip only.	N/A	
~~	(double byte command)	0	0	#	#	#	#	#	#	#	#	Do not use.	N/A	


Note: Please refer to UC1608 datasheet for details.

6. CONNECTION WITH MPU


UC1608 supports two parallel bus protocols, in either 8-bit or 4-bit bus width, and three serial bus protocols. Designers can either use parallel bus to achieve high data transfer rate, or use serial bus to save the I/O terminals. The interface bus mode is determined by BM[1:0] and [D7:D6] by the following relationship.

Βι	us type	8080		6800		S8 (4wr) S8uc (3wr)		S9 (3wr)		
V	Vidth	8-bit	8-bit 4-bit 8-bit 4-bit Serial							
A	ccess		Read/	Write			Write Only			
	BM[1:0]	10	00	11	01		00	01		
	D[7:6]	Data	0x	Data	0x	10	11	10		
	CS				Chi	p Select				
Control & Data	CD			Сс	ontrol / [Data 0 or 1				
Pins	WR0	/W	/R	R/	W	0				
	WR1	/R	RD	EN			0			
	D[5:4]	Data	Ι	Data	_		_			
	D[3:0]	Data	Data	Data	Data	D0=SCK, D3=SE		AC		


Note: Connect unused control pins and data bus pins to VDD or VSS.

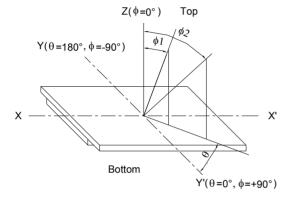
a. 8080 8-bit parallel interface

b. 4-wire SPI (S8) interface

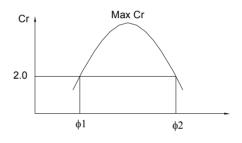
c. 3-wire SPI (S9) interface

7. INITIALIZATION AND POWER OFF

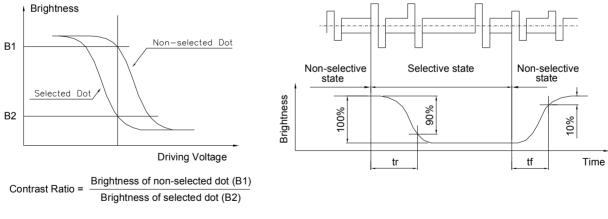
No.	Command	Operation
1	Power on	Power on
2	Automatic Power-ON-Reset	There is built-in Power-On-Reset circuit in UC1608. System reset will be activated automatically after VDD is stabilized. Delay 15ms, and then start the following initialization commands.
3	Set Mux Rate and Temperature Compensation: 26H	MR=1b: 1/128 duty TC[1:0]=10b: -0.10%/℃
4	Set Power Control: 2DH	PC[1:0]=01b: 26nF < LCD < 43NF PC[2]=1b: Internal VLCD
5	Set LCD Bias Ratio: EAH	BR[1:0]=10b: 1/12 bias
6	Set Gain and Potentiometer: 81H, 8BH	GN[1:0]=10b PM[5:0]=001011b: "001011b" is a reference value, modify this value to get the best display contrast. Because of the manufacturing dispersion of LCD modules, potentiometer (PM[5:0]) value may need be changed to match the driving voltage (VLCD) for different lot of LCD modules.
7	Set LCD Mapping Control: C8H	MY=1b: COM Reverse MX=0b: SEG Normal MSF=0b: D[0:7] LSB first
8	Set start Line: 40H	SL[5:0]=00000b: Start line number=0
9	Set Display Enable: AFH	DC2=1b: Normal operation mode
10	End of initialization	
11	Write display data	


7.1 Power on Initialization Sequence

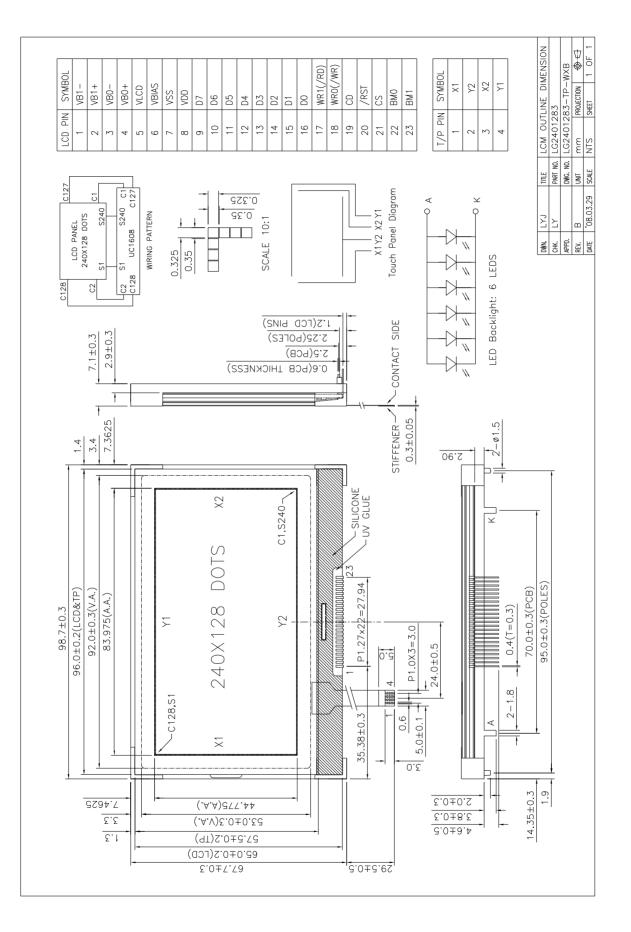
7.2 Power off Sequence


No.	Command	Description
1	Optional status	Normal operation
2	System Reset: E2H	Reset system, delay 2 ms.
3	Power off	Power off

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
View Angle	Φ2-Φ1	Cr≥2 , θ=0°		60		Deg	Note1, Note2
Contrast Ratio	Cr	Φ=0°,θ=0°	3				Note3
D T	tr (rise)	Φ=0° ,θ = 0°		200		ms	
Response Time	tf (fall)	Φ=0° ,θ = 0°		250		ms	Note4


8. ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Note1: Definition of viewing angle ϕ , θ


Note2: Definition of viewing angle range $\phi 1, \phi 2$

Note3: Definition of contrast ratio (positive type)

Note3: Definition of response time

- 15 -

10. LCD MODULE NUMBERING SYSTEM

(L 1)	G (2)	240 (3)	128 (4)	3 (5)	_	F (6)	F (7)	D (8)	W (9)	H (10)	6 (11)	V (12)	_	TP (13)
(1)	Br	and													
(2)	Module type														
()	C - Character module														
	G - Graphic module														
(3)	Di	splay f	ormat												
	(Charac	ter modu	ıle : Nun	nber of	f chara	cters	per lin	e, two	digits	xx				
	(Graphic	c module	: Num	ber of	colum	ns, thi	ree dig	gits XX	X					
(4)	Di	splay f	ormat												
	(Charac	ter modu	ıle : Nun	nber of	f lines,	one d	igit X							
	(Graphic	c module	: Num	ber of	rows,	two or	three	digits	XX o	r XXX				
(5)															
(6)	LC	D moc	le												
	٦	F - TN	Positive,	Gray			N - 7	N Ne	gative	, Blue					
	5	3 - STN	N Positive	e, Yellow	/-greei	n	G - S	STN P	ositive	, Gra	у				
	E	3 - STN	Negativ	ve, Blue			F - F	STN	Positiv	ve, Wł	nite				
	ł	K - FS1	TN Nega	tive, Bla	ck		L - F	STN	Negat	ive, B	lue				
(7)	Pc	larizer	mode												
	F	२ - Ref	lective	F - ⊤	ransfle	ective	I	M - Tra	ansmi	ssive					
(8)		acklight													
			hout bac	klight	L - A	Array LE	ΞD	D - E	dge li	ght LE	ED	e - El	. C	- CCF	L
(9)		acklight		_		_		•••	-						
			ow-greer		- Blue		N - W			- Gre					
(4.0		4 - Amt			- Red	r	VI - IVIU	ulti col	or N	II —VVI	thout	oackli	ght		
(10			g temper ndard ter		-		c \		toodo	d Tam			20 1		
(11			direction	nperatur	e(0~	- +50 (()	H - E)	clende	a ien	iperati	ure (-	20 ~ +	70 C))
(11)		3 - 3:00		6:00	a o	.00	11 1	12.00							
(12			Converte		9 – 9	.00	0 -	12.00							
(12	•		I – With)C. cor	werter	v	– Buil	t in D(C-DC	conve	rter			
(13		rsion c					v	Dui		5 00	501100				
(/ith touch	npanel											

11. PRECAUTIONS FOR USE OF LCD MODULE

11.1 Handing Precautions

- 1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 2) If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth. If the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 3) Do not apply excessive force on the surface of display or the adjoining areas of LCD module since this may cause the color tone to vary.
- 4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 5) If the display surface of LCD module becomes contaminated, blow on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents.
 - · Isopropyl alcohol
 - · Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer.

Especially, do not use the following:

- · Water
- · Ketone
- · Aromatic Solvents
- 6) When mounting the LCD module make sure that it is free of twisting, warping, and distortion. Distortion has great influence upon display quality. Also keep the stiffness enough regarding the outer case.
- 7) Be sure to avoid any solvent such as flux for soldering never stick to Heat-Seal. Such solvent on Heat-Seal may cause connection problem of heat-Seal and TAB.
- 8) Do not forcibly pull or bend the TAB I/O terminals.
- 9) Do not attempt to disassemble or process the LCD module.
- 10)NC terminal should be open. Do not connect anything.
- 11) If the logic circuit power is off, do not apply the input signals.
- 12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - \cdot Be sure to ground the body when handling the LCD module.
 - \cdot Tools required for assembly, such as soldering irons, must be properly grounded.
 - To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 11.2 Storage Precautions
 - When storing the LCD module, avoid exposure to direct sunlight or to the light of fluorescent lamps and high temperature/high humidity. Whenever possible, the LCD module should be stored in the same conditions in which they were shipped from our company.

- 19 -

2) Exercise care to minimize corrosion of the electrodes. Corrosion of the electrodes is accelerated by water droplets or a current flow in a high humidity environment.

11.3 Design Precautions

- 1) The absolute maximum ratings represent the rated value beyond which LCD module can not exceed. When the LCD modules are used in excess of this rated value, their operating characteristics may be adversely affected.
- To prevent the occurrence of erroneous operation caused by noise, attention must be paid to satisfy VIL, VIH specification values, including taking the precaution of using signal cables that are short.
- 3) The liquid crystal display exhibits temperature dependency characteristics. Since recognition of the display becomes difficult when the LCD is used outside its designated operating temperature range, be sure to use the LCD within this range. Also, keep in mind that the LCD driving voltage levels necessary for clear displays will vary according to temperature.
- 4) Sufficiently notice the mutual noise interference occurred by peripheral devices.
- 5) To cope with EMI, take measures basically on outputting side.
- 6) If DC is impressed on the liquid crystal display panel, display definition is rapidly deteriorated by the electrochemical reaction that occurs inside the liquid crystal display panel. To eliminate the opportunity of DC impressing, be sure to maintain the AC characteristics of the input signals sent to the LCD Module.

11.4 Others

- Liquid crystals solidify under low temperatures (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the LCD module is subjected to a strong shock at a low temperature.
- 2) If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.
- 3) To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity, etc., exercise care to avoid touching the following sections when handling the module:
 - · Terminal electrode sections.
 - · Part of pattern wiring on TAB, etc.